Page 200 - LAS CIENCIAS AMBIENTALES EN EL ANTROPOCENO - DIGITAL(1)
P. 200

the highest concentration of substrate),   removal percentages obtained for COD   matter using tannery wastewater
              were the most efficient systems both in   at the end of the operation period   as a substrate in a microbial fuel cell.
              the generation of electrical energy and   were 67.3% for MFC3 and 69.8% for   Consequently, this work constitutes
              in the removal of organic matter, with   MFC6. Regarding the removal of BOD,   a contribution to the optimization of
              maximum voltage-current values for the   the results obtained were 55.9 and   tannery wastewater treatment systems,
              CCM3 of 100,278 mV - 10,050 mA, and   60.6% for MFC3 and MFC6, respectively.   and their potential use as a renewable
              for the CCM6 of 99,264 mV - 9,948 mA.   Considering the results obtained, it is   energy source.
              The maximum power density obtained   concluded that it is possible to generate
              for MFC3 and MFC6 was 839,829 and   significant values of electrical energy,
              822,912 mW / m2, respectively. The   with simultaneous removal of organic


              REFERENCIAS



              Ahn, Y.; Hatzell, M.C.; Zhang, F.;   Bhunia, B. (2017). Performance   using microbial fuel cells (MFCs).
                 Logan, B. E. (2014). Different   improvement of microbial fuel cell   Water Science and Technology,
                 electrode configurations to     (MFC) using suitable electrode   64(4), 904–909. https://doi.
                 optimize performance of multi-  and Bioengineered organisms:    org/10.2166/wst.2011.401
                 electrode microbial fuel cells for   A review. Bioengineered, 8(5),   Rabaey, K.; Verstraete, W.
                 generating power or treating    471–487. https://doi.org/10.108  (2005). Microbial fuel cells:
                 domestic wastewater. Journal    0/21655979.2016.1267883         Novel  biotechnology  for
                 of Power Sources, 249, 440–  Fangzhou, D.; Zhenglong, L.;       energy  generation.  Trends  in
                 445. https://doi.org/10.1016/j.  Shaoqiang, Y.; Beizhen, X.;    Biotechnology, 23(6), 291–298.
                 jpowsour.2013.10.081            Hong, L. (2011). Electricity    https://doi.org/10.1016/j.
              Cheng, S.; Liu, H.; Logan, B.E. (2006).   generation directly using   tibtech.2005.04.008
                 Increased power generation      human feces wastewater       Revelo, D.M.; Hurtado, N.H.; Ruiz,
                 in a continuous flow MFC with   for life support system. Acta   J.O.; López, S. (2015). Uso de
                 advective flow through the porous   Astronautica, 68(9–10), 1537–  microorganismos nativos en la
                 anode and reduced electrode     1547. https://doi.org/10.1016/j.  remoción simultánea de materia
                 spacing. Environmental Science   actaastro.2009.12.013          orgánica y cr(VI) en una celda
                 and Technology, 40(7), 2426–  Liu, H.; Ramnarayanan, R.; Logan, B.E.   de combustible microbiana de
                 2432. https://doi.org/10.1021/  (2004). Production of Electricity   biocátodo  (CCM).  Informacion
                 es051652w                       during Wastewater Treatment     Tecnologica, 26(6), 77–88.
              Choi, J.; Ahn, Y. (2013). Continuous   Using a Single Chamber Microbial   https://doi.org/10.4067/S0718-
                 electricity generation in stacked   Fuel Cell. Environmental Science   07642015000600010
                 air cathode microbial fuel cell   and Technology,  38(7),  2281–  Revelo, D.M.; Hurtado, N.H.; Ruiz, J.O.
                 treating domestic wastewater.   2285.  https://doi.org/10.1021/  (2013). Celdas de combustible
                 Journal of Environmental        es034923g                       microbianas (CCMs): Un reto para
                 Management, 130, 146–152.    Puig, S.; Serra, M.; Coma, M.;     la remoción de materia orgánica y
                 https://doi.org/10.1016/j.      Balaguer, M.D.; Colprim, J.     la generación de energía eléctrica.
                 jenvman.2013.08.065             (2011). Simultaneous domestic   Informacion Tecnologica, 24(6),
              Choudhury, P.; Prasad Uday, U.S.;   wastewater treatment and       17–28. https://doi.org/10.4067/
                 Bandyopadhyay, T.K.;  Ray, R.N.;   renewable energy production   S0718-07642013000600004



                                                                                                     191
   195   196   197   198   199   200   201   202   203   204   205