Page 200 - LAS CIENCIAS AMBIENTALES EN EL ANTROPOCENO - DIGITAL(1)
P. 200
the highest concentration of substrate), removal percentages obtained for COD matter using tannery wastewater
were the most efficient systems both in at the end of the operation period as a substrate in a microbial fuel cell.
the generation of electrical energy and were 67.3% for MFC3 and 69.8% for Consequently, this work constitutes
in the removal of organic matter, with MFC6. Regarding the removal of BOD, a contribution to the optimization of
maximum voltage-current values for the the results obtained were 55.9 and tannery wastewater treatment systems,
CCM3 of 100,278 mV - 10,050 mA, and 60.6% for MFC3 and MFC6, respectively. and their potential use as a renewable
for the CCM6 of 99,264 mV - 9,948 mA. Considering the results obtained, it is energy source.
The maximum power density obtained concluded that it is possible to generate
for MFC3 and MFC6 was 839,829 and significant values of electrical energy,
822,912 mW / m2, respectively. The with simultaneous removal of organic
REFERENCIAS
Ahn, Y.; Hatzell, M.C.; Zhang, F.; Bhunia, B. (2017). Performance using microbial fuel cells (MFCs).
Logan, B. E. (2014). Different improvement of microbial fuel cell Water Science and Technology,
electrode configurations to (MFC) using suitable electrode 64(4), 904–909. https://doi.
optimize performance of multi- and Bioengineered organisms: org/10.2166/wst.2011.401
electrode microbial fuel cells for A review. Bioengineered, 8(5), Rabaey, K.; Verstraete, W.
generating power or treating 471–487. https://doi.org/10.108 (2005). Microbial fuel cells:
domestic wastewater. Journal 0/21655979.2016.1267883 Novel biotechnology for
of Power Sources, 249, 440– Fangzhou, D.; Zhenglong, L.; energy generation. Trends in
445. https://doi.org/10.1016/j. Shaoqiang, Y.; Beizhen, X.; Biotechnology, 23(6), 291–298.
jpowsour.2013.10.081 Hong, L. (2011). Electricity https://doi.org/10.1016/j.
Cheng, S.; Liu, H.; Logan, B.E. (2006). generation directly using tibtech.2005.04.008
Increased power generation human feces wastewater Revelo, D.M.; Hurtado, N.H.; Ruiz,
in a continuous flow MFC with for life support system. Acta J.O.; López, S. (2015). Uso de
advective flow through the porous Astronautica, 68(9–10), 1537– microorganismos nativos en la
anode and reduced electrode 1547. https://doi.org/10.1016/j. remoción simultánea de materia
spacing. Environmental Science actaastro.2009.12.013 orgánica y cr(VI) en una celda
and Technology, 40(7), 2426– Liu, H.; Ramnarayanan, R.; Logan, B.E. de combustible microbiana de
2432. https://doi.org/10.1021/ (2004). Production of Electricity biocátodo (CCM). Informacion
es051652w during Wastewater Treatment Tecnologica, 26(6), 77–88.
Choi, J.; Ahn, Y. (2013). Continuous Using a Single Chamber Microbial https://doi.org/10.4067/S0718-
electricity generation in stacked Fuel Cell. Environmental Science 07642015000600010
air cathode microbial fuel cell and Technology, 38(7), 2281– Revelo, D.M.; Hurtado, N.H.; Ruiz, J.O.
treating domestic wastewater. 2285. https://doi.org/10.1021/ (2013). Celdas de combustible
Journal of Environmental es034923g microbianas (CCMs): Un reto para
Management, 130, 146–152. Puig, S.; Serra, M.; Coma, M.; la remoción de materia orgánica y
https://doi.org/10.1016/j. Balaguer, M.D.; Colprim, J. la generación de energía eléctrica.
jenvman.2013.08.065 (2011). Simultaneous domestic Informacion Tecnologica, 24(6),
Choudhury, P.; Prasad Uday, U.S.; wastewater treatment and 17–28. https://doi.org/10.4067/
Bandyopadhyay, T.K.; Ray, R.N.; renewable energy production S0718-07642013000600004
191