Page 178 - LAS CIENCIAS AMBIENTALES EN EL ANTROPOCENO - DIGITAL(1)
P. 178

SUMMARY                                         REFERENCIAS





                  esearches a farm level to identify   Criollo, H.; Silva, A.; Delgado, H. (2016).   Nair,  P.K.R.;  Kumar,  B.M.;  Nair,  V.D.
                  and collect reliable activity data   Greenhouse gas balance related   (2009). Agroforestry as a strategy
             Rand to quantify emissions by       to conventional and sustainable   for carbon sequestration. J Plant
              sources of GHG and removals of soil   fruit production systems in   Nutr Soil Sci 172(1):10–23.
              and biomass C by sinks needs to be   the Highlands region of Pasto,   Parra, A.S.; de Figueiredo, E.B.; de
              addressed. One proposed solution   Colombia. Agronomía Colombiana   Bordonal, R.O.; Moitinho, M.R.;
              is to adapt IPCC methodologies that   34(2):277–284.               Teixeira, D.D.B.; La Scala, N. (2019).
              include estimations of both CO2   Brevik, E.C. (2012). Soils and climate   Greenhouse gas emissions
              emissions and carbon sequestration   change: gas fluxes and soil   in  conversion  from  extensive
              in  agricultural  systems,  which  were   processes. Soil Horiz 53:12–23.   pasture to other agricultural
              applied to Colombia at the farm level in   https://doi.org/10.2136/sh12-  systems in the Andean region of
              this study. The aim of this work was to   04-0012.                 Colombia. Environ Dev Sustain
              provide an assessment of GHG balances   García, D.C.; Saraz, J.A.; Rosales, R.B.   21(1):249–262.
              through these IPCC methodologies to   (2016). Estimation of greenhouse   Silva-Parra, A. (2018). Modelación de
              identify potential GHG mitigation  in   gas emissions from agricultural   los stocks de carbono del suelo y las
              sustainable agricultural systems used   activities  in  the  Aburra  Valley   emisiones de dióxido de carbono
              in Colombia that provide acceptable   Metropolitan Area - Colombia. Rev   (GEI) en sistemas productivos
              GHG trade-offs to the atmosphere.   Fac Nac Agron 69(1):7783–7792.   de la Altillanura Plana. Orinoquia
              Agroforestry systems made the largest   http://doi.org/10.15446/rfna.  22(2):158–171 (2018). http://doi.
              contribution to this mitigation potential   v69n1.54746.           org/10.22579/20112629.525.
              because of the potential to sequester   IPCC. (2006). (IPCC) guidelines   Silva-Parra, A.; Garay Rodriguez,
              carbon in both soil and biomass,   for national greenhouse gas     S.; Gómez Insuasti, A.S. (2018).
              giving a negative GHG emission to the   inventories,  prepared  by  the   Impacto de Alnus acuminata Kunth
              atmosphere. Agroforestry systems   National Greenhouse Gas         en los flujos de N2O y calidad del
              play a important role, however, crop   Inventories Programme, in   pasto Pennisetum clandestinum
              rotation and silvopastoral systems can   Agriculture, Forestry and Other   Hochst. Ex Chiov. Colombia
              represent a GHG mitigation opportunity   Land Use, Vol. 4, ed. by Eggleston   Forestal 21(1):47–57. https://doi.
              for sustainable agricultural production   HS, Buendia L, Miwa K, Ngara   org/10.14483/2256201X.11629.
              at the farm level in Colombia.     T and Tanabe K. IGES, Hayama,   Smith, P.; Martino, D.; Cai, Z.; Gwary, D.;
                                                 Japan.                          Janzen, H.; Kumar, P.; et al. (2008).
                                              Lal, R. (2011). Sequestering carbon   Greenhouse gas mitigation in
                                                 in soils of agro-ecosystems.    agriculture. Philos Trans R Soc B
                                                 Food Policy 36:533–539.         Biol Sci 1492:789–813.
                                                 https://doi.org/10.1016/j.
                                                 foodpol.2010.12.001










                                                                                                     169
   173   174   175   176   177   178   179   180   181   182   183